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a b s t r a c t

At the end of 2019, the current novel coronavirus emerged as a severe acute respiratory
disease that has now become a worldwide pandemic. Future generations will look back
on this difficult period and see how our society as a whole united and rose to this
challenge. Many reports have suggested that this new virus is becoming comparable
to the Spanish flu pandemic of 1918. We provide a statistical study on the modelling
and analysis of the daily incidence of COVID-19 in eighteen countries around the world.
In particular, we investigate whether it is possible to fit count regression models to
the number of daily new cases of COVID-19 in various countries and make short term
predictions of these numbers. The results suggest that the biggest advantage of these
methods is that they are simplistic and straightforward allowing us to obtain preliminary
results and an overall picture of the trends in the daily confirmed cases of COVID-19
around the world. The best fitting count regression model for modelling the number
of new daily COVID-19 cases of all countries analysed was shown to be a negative
binomial distribution with log link function. Whilst the results cannot solely be used to
determine and influence policy decisions, they provide an alternative to more specialised
epidemiological models and can help to support or contradict results obtained from
other analysis.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The novel coronavirus disease (COVID-19) first identified in Wuhan, the capital of Hubei, China in October 2019, is a
evere acute respiratory disease that has now become a worldwide pandemic. Fig. 1 shows the extreme extent to which
his pandemic has spread across the world, with the total number of confirmed global cases exceeding 700,000 as of 30th
arch 2020 and is still increasing exponentially. The total number of cases worldwide has already surpassed the number
ue to the severe acute respiratory syndrome (SARS) in the early 2000s. Many reports have suggested that this new virus
s becoming comparable to the Spanish flu pandemic from 1918.

The most common symptoms of COVID-19 are almost identical to those of the flu - e.g. high fever, fatigue, cough and
hortness of breath. Individuals have been required to self-isolate if they believe that they are exhibiting these symptoms.
he most severe symptoms have been linked to pneumonia, multi-organ failure, and death. Other symptoms of COVID-19
nclude the loss of sense of smell (anosmia) and in some cases individuals may display no symptoms at all, but will still
e carrying the virus.
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Fig. 1. A world map of the total confirmed cases of COVID-19 as of 30th March 2020.

The global effects of COVID-19 have led to many countries locking down their international borders, cities and towns
or extended periods. For example, in China, UK, Italy, Spain, France and many others. Hence, many are fearful that another
lobal recession is on the horizon. On the contrary, after a two month national lock-down, China has shown the world
hat a strict lock-down has contributed to a reduction in the number of new cases and deaths from COVID-19, with the
umber of new cases recently decreasing to zero.
The current literature relating to COVID-19 is limited and the majority of the known work focuses exclusively on China,

here the first major outbreaks occurred. The existing research has focused on topics such as determining the population
ho are most at risk, the factors increasing the risk of infection, the medical properties of those who become infected,
he factors that can improve clinical outcomes and reduce the spread of the virus, the biological properties of the virus,
nd many others. See for example [1–7], and [8].
More specifically, the literature relating to COVID-19 analysis outside of China has been limited. Since these countries

re lagging behind China in terms of the overall spread of the disease, much of the literature has been focused on modelling
nd predicting the disease in the early stages of the outbreak — particularly the daily incidence (number of new confirmed
ases per day) and the basic reproductive number. For example, in Italy [9,10], in France [11], and in Japan [12–14]; to
ame but a few.
Thus far, a wide range of statistical and predictive methods have already been applied to the analysis of COVID-19 in

hina, for example traditional epidemic models, such as the SIR model [15,16] and the basic reproductive number [17];
eural networks [18]; regression models [19,20]; experimental frameworks [21]; correlation analysis [22].
From the literature, it is evident that the majority of the analyses on COVID-19 are limited to China, and a limited

umber of countries in Asia and Europe. These are arguably the countries that first identified known cases of COVID-19.
owever, we should note that since this is an ongoing situation, new research is being published daily and therefore the
iterature is being updated continuously. Hence, our main motivation is to provide a statistical analysis in modelling and
nalysing the number of confirmed cases of COVID-19 in eighteen countries around the world. The main contributions
f this paper are: (i) to provide a statistical analysis of COVID-19 worldwide; (ii) to investigate whether it is possible to
tilise count regression models for fitting and predicting the number of daily confirmed cases due to COVID-19 globally.
The contents of this paper are organised as follows. Section 2 describes the data used in our analysis. In Section 3,

e detail the methodology and models used. Section 4 outlines the results, and provides a discussion of these results.
ection 5 provides a conclusion and summary of our results.

. Data

The data we analyse consists of the historical daily new cases due to the COVID-19 Coronavirus confirmed from
ighteen different countries worldwide (China, Denmark, Estonia, France, Germany, Italy, Malaysia, Philippines, Qatar,
outh Korea, Sri Lanka, Sweden, Taiwan, Thailand, UAE, UK, USA, Vietnam), listed on the EU Open Data Portal from 31st
ecember 2019 to 25th March 2020. These countries were chosen because they were the earliest countries to detect
OVID infections.
The data were downloaded from the website ‘‘European Centre for Disease Prevention and Control’’ (ECDC) which

ources its data from the WHO, and our analysis is limited to the data available at the time of writing. The eighteen
ountries were chosen based on their ranking in terms of the highest numbers of cases, thus we believe that the data
btained gives a satisfactory representation of the main countries affected by the virus at these times.
2
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. Methodology

In epidemiology and the study of infectious diseases, count-based data related to incidence are commonplace. In
articular, data such as the daily incidence (number of cases) relating to an infectious disease can be modelled and
redicted using a wide variety of methods, including compartmental (or deterministic) models such as the SIR and SEIR
odels, and stochastic models such as discrete time and continuous time Markov chains, and stochastic differential
quations. In this study, we apply discrete time count regression models with the aim of modelling and predicting the daily
ncidence of COVID-19 across the world. Such models are preferred because they provide an appropriate, rich, and flexible
odelling environment for non-negative integers. In addition, the models are robust for estimating constant relative policy
ffects and when implemented to policy evaluations, such models can move beyond the consideration of mean effects
nd determine the effect on the entire distribution of outcomes instead [23]. Poisson count regression models are part of
he family of generalised linear models that are commonly used in epidemiological studies [24]. The Poisson and negative
inomial regression models are widely used for modelling discrete count data where the count takes a non-negative
nteger with no upper limit, while the data is highly skewed. The negative binomial regression has the added advantage
f being able to deal with the problem of overdispersion [25].
The four models below are due to Christou and Fokianos [26,27], Fokianos and Fried [28], Fokianos et al. [29]

nd Fokianos and Tjostheim [30]. The models due to Christou and Fokianos [26] are based on the negative binomial
istribution. The models due to the others are based on the Poisson distribution. Both Poisson and negative binomial
istributions are commonly implemented when dealing with count data and observations occurring at a specific rate.
Let Zt = denote the number of newly confirmed cases in a country on day t , t = 1, . . . , T . In other words, Zt = the

hange in the cumulative confirmed cases from day t − 1 to t . For each of the eighteen countries selected, the following
four regression models were fitted to the corresponding daily incidence data:

• Zt | Ft−1 ∼ Poisson (α + βt), with link function = ‘identity’ and distribution = ‘Poisson’.
• Zt | Ft−1 ∼ Poisson (exp (α + βt)), with link function = ‘log’ and distribution = ‘Poisson’.
• Zt | Ft−1 ∼ NegativeBinomial (α + βt, φ), with link function = ‘identity’ and distribution = ‘negative binomial’.
• Zt | Ft−1 ∼ NegativeBinomial (exp (α + βt) , φ), with link function = ‘log’ and distribution ‘negative binomial’.

here Ft−1 denotes the history up to day t − 1, α represents the intercept parameter, and β is the slope parameter.
Each of the four models was fitted by the method of maximum likelihood. That is, by maximising

L1(α, β) =

T∏
t=1

(α + βt)Zt

Zt !
exp (−α − βt) ,

L2(α, β) =

T∏
t=1

exp (α + βt)Zt

Zt !
exp [− exp (α + βt)] ,

L3(α, β, φ) =

T∏
t=1

[(
Zt + α + βt − 1

Zt

)
(1 − φ)α+βtφZt

]
,

and

L4(α, β, φ) =

T∏
t=1

[(
Zt + exp (α + βt) − 1

Zt

)
(1 − φ)exp(α+βt)φZt

]
,

respectively, with respect to α, β and φ. We shall denote the maximum likelihood estimates by α̂, β̂ and φ̂, respectively.
For a more in-depth discussion of the four regression models we refer the readers to the literature cited above. The models
were fitted using the command tsglm in the R package tscount [31].

For each of the fitted models, we computed the Akaike information criterion (AIC), Bayesian information criterion (BIC)
and associated p-values obtained by re-sampling. The AIC for the four models were computed as

AIC = 4 − 2 log L1
(̂
α, β̂

)
,

AIC = 4 − 2 log L2
(̂
α, β̂

)
,

AIC = 6 − 2 log L3
(̂
α, β̂, φ̂

)
,

and

AIC = 6 − 2 log L4
(̂
α, β̂, φ̂

)
.

The BIC for the four models were computed as

BIC = 2 log T − 2 log L
(̂
α, β̂

)
,
1

3
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able 1
alues of AIC (and values of BIC in brackets) for the four models fitted to the data from 31 December 2019 to 25 March 2020.
Country Models

(Identity, Poisson) (Log, Poisson) (Identity, negative binomial) (Log, negative binomial)

China −99.1 (−94.1) −100.0 (−95.0) −123.7 (−116.3) −138.2 (−130.8)
Denmark −97.9 (−93.0) −112.7 (−107.8) −135.2 (−127.8) −142.0 (−134.6)
Estonia −106.3 (−101.5) −108.7 (−103.8) −121.0 (−113.8) −121.3 (−114.1)
France −99.6 (−94.6) −100.7 (−95.8) −111.3 (−103.9) −141.9 (−134.5)
Germany −96.4 (−91.5) −114.9 (−110.0) −114.9 (−107.5) −139.2 (−131.8)
Italy −110.2 (−105.3) −114.1 (−109.2) −123.1 (−115.7) −132.1 (−124.7)
Malaysia −103.6 (−98.7) −120.5 (−115.5) −123.1 (−115.7) −143.0 (−135.6)
Philippines −99.9 (−95.1) −109.9 (−105.1) −127.2 (−120.0) −130.1 (−122.9)
Qatar −96.6 (−91.7) −107.5 (−102.7) −107.6 (−100.4) −114.3 (−107.0)
South Korea −98.4 (−93.5) −98.9 (−94.0) −113.4 (−106.0) −140.7 (−133.3)
Sri Lanka −98.1 (−93.3) −106.5 (−101.8) −111.6 (−104.5) −117.2 (−110.1)
Sweden −103.6 (−98.6) −119.8 (−114.8) −118.3 (−110.9) −139.8 (−132.4)
Taiwan −110.2 (−105.3) −122.9 (−118.0) −121.0 (−113.7) −128.8 (−121.5)
Thailand −107.5 (−102.7) −109.7 (−104.9) −121.1 (−114.0) −138.7 (−131.6)
United Arab Emirates −120.3 (−115.5) −122.9 (−118.2) −128.3 (−121.2) −128.4 (−121.2)
United Kingdom −107.3 (−102.4) −129.6 (−124.7) −134.4 (−127.0) −139.1 (−131.7)
United States of America −107.9 (−102.9) −114.7 (−109.8) −121.7 (−114.3) −125.5 (−118.1)
Vietnam −97.3 (−92.4) −100.1 (−95.3) −136.2 (−128.9) −139.6 (−132.4)

BIC = 2 log T − 2 log L2
(̂
α, β̂

)
,

BIC = 3 log T − 2 log L3
(̂
α, β̂, φ̂

)
,

nd

BIC = 3 log T − 2 log L4
(̂
α, β̂, φ̂

)
.

he values are given in Table 1. According to AIC and BIC values, the best model out of the four is the negative binomial
odel with a logarithmic link function. Table 2 gives the estimates of the intercept and slope parameters along with

heir corresponding standard errors for this model. Also given in Table 2 are the p-values quantifying the significance of
he slope parameter. In line with standard significance levels, if the p-value is less than 0.05 then the slope estimate is
deemed to be significant.

4. Results and discussion

We applied the models specified in Section 3 and fitted them to our data on the number of new daily cases of
individuals infected with COVID-19 from eighteen different countries worldwide. According to Table 2, the majority
of p-values corresponding to the best fitting model (negative binomial model with a logarithmic link function) for
each country’s data are smaller than 0.05 — indicating significance of the slope coefficient estimates at the 5 percent
significance. However, a particular exception is that of China, whose p-value is significantly greater than 0.05. This result
is, perhaps, not surprising as China was the first country to be majorly affected by COVID-19 and by the time most other
countries started to see significant increases in new numbers of cases its numbers had already peaked and new cases in
China were being confirmed at a slower rate.

Among the countries where the model appears to show a reasonable fit, the slope estimate was positive in all cases
indicating the expected number of new cases confirmed each day is expected to increase with respect to time. In particular,
the UK and Vietnam have the largest and smallest slope estimates, respectively, hence the rate of increase in new daily
COVID-19 cases with time is the highest for the UK and lowest for Vietnam.

Figs. 2 and 3 provide the predicted values of Zt , their median and 95 percent confidence intervals for the 10 days
immediately following the period that our data covers (starting from 26 March 2020). Also plotted in the figures are the
actual number of newly reported cases for these 10 days. Figs. 4 and 5 plot the same for four of the eighteen countries
for, respectively, 7 days ahead and 15 days ahead. We have chosen four countries for limitations of space and for not
being repetitive. The y axes of Figs. 2 to 5 are plotted in log scale. Because log 0 is undefined, we have left out zeros while
plotting in log scale. This means some of the plots in Figs. 2 to 5 have fewer than five curves.

The predicted Zt values time at t were computed as φ̂
(
1 − φ̂

)−1 exp
(̂
α + β̂t

)
. The predicted median at time t , say

M(t), was computed as the solution of
M(t)∑[(

k + exp
(̂
α + β̂t

)
− 1

k

) (
1 − φ̂

)exp(α̂+β̂t) (̂
φ
)k]

= 0.5.

k=0

4
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arameter estimates and standard errors for the (log, negative binomial) model.
Country Observations Intercept SE Slope SE p-value

China 87 6.960 0.442 −0.003 0.009 0.763
Denmark 87 −4.032 1.179 0.106 0.017 0.000
Estonia 82 −6.390 1.118 0.125 0.016 0.000
France 87 −5.660 1.582 0.160 0.021 0.000
Germany 87 −7.119 2.583 0.182 0.034 0.000
Italy 87 −1.609 1.088 0.123 0.015 0.000
Malaysia 86 −6.524 11.131 0.139 0.054 0.000
Philippines 83 −9.782 18.315 0.173 0.254 0.082
Qatar 83 −3.636 1.683 0.090 0.017 0.000
South Korea 87 2.363 0.458 0.041 0.008 0.005
Sri Lanka 78 −8.422 3.753 0.141 0.018 0.000
Sweden 87 −4.795 0.849 0.120 0.012 0.000
Taiwan 85 −4.538 2.377 0.089 0.017 0.000
Thailand 80 −6.063 15.291 0.127 0.017 0.011
United Arab Emirates 81 −4.184 92.251 0.077 0.007 0.000
United Kingdom 87 −9.289 8.573 0.192 0.011 0.000
United States of America 87 −4.851 69.898 0.106 0.028 0.000
Vietnam 83 −4.519 1.810 0.084 0.019 0.000

Table 3
Values of AIC (and values of BIC in brackets) for the four models fitted to the data from 31 December 2019 to 11 February 2020.
Country Models

(Identity, Poisson) (Log, Poisson) (Identity, negative binomial) (Log, negative binomial)

China −52.5 (−49.0) −53.8 (−50.2) −57.9 (−52.6) −60.7 (−55.4)
Denmark −47.2 (−43.7) −55.7 (−52.1) −58.9 (−53.6) −60.0 (−54.6)
Estonia −53.8 (−50.4) −54.1 (−50.6) −54.2 (−49.1) −63.6 (−58.4)
France −49.6 (−46.0) −50.8 (−47.2) −60.4 (−55.1) −61.1 (−55.7)
Germany −49.8 (−46.3) −59.4 (−55.9) −61.0 (−55.6) −62.8 (−57.5)
Italy −53.2 (−49.6) −54.2 (−50.7) −54.4 (−49.1) −58.5 (−53.2)
Malaysia −49.7 (−46.2) −54.2 (−50.7) −56.9 (−51.6) −60.3 (−55.0)
Philippines −48.1 (−44.6) −50.0 (−46.6) −48.3 (−43.1) −57.4 (−52.2)
Qatar −46.4 (−42.9) −47.8 (−44.4) −48.7 (−43.5) −62.6 (−57.4)
South Korea −47.9 (−44.3) −52.4 (−48.9) −57.5 (−52.2) −61.5 (−56.1)
Sri Lanka −58.2 (−54.8) −58.5 (−55.2) −58.5 (−53.5) −60.9 (−55.9)
Sweden −52.5 (−48.9) −57.0 (−53.5) −55.2 (−49.9) −61.5 (−56.2)
Taiwan −53.6 (−50.1) −57.9 (−54.4) −60.8 (−55.6) −63.7 (−58.5)
Thailand −46.6 (−43.2) −48.9 (−45.5) −48.9 (−43.8) −53.7 (−48.7)
United Arab Emirates −46.3 (−42.9) −53.2 (−49.8) −55.7 (−50.5) −62.2 (−57.1)
United Kingdom −49.9 (−46.4) −51.3 (−47.8) −55.6 (−50.3) −62.3 (−57.0)
United States of America −47.3 (−43.7) −53.7 (−50.2) −58.9 (−53.6) −61.2 (−55.8)
Vietnam −50.9 (−47.4) −53.8 (−50.4) −55.9 (−50.7) −57.1 (−51.9)

The predicted 95 percent confidence interval at time t , say [L(t),U(t)], was computed as the solutions of
L(t)∑
k=0

[(
k + exp

(̂
α + β̂t

)
− 1

k

) (
1 − φ̂

)exp(α̂+β̂t) (̂
φ
)k]

= 0.025

and
U(t)∑
k=0

[(
k + exp

(̂
α + β̂t

)
− 1

k

) (
1 − φ̂

)exp(α̂+β̂t) (̂
φ
)k]

= 0.975.

The actual number of new cases falls within the 95 percent confidence intervals for each of the eighteen countries
(for 7 days, 10 days and 15 days), suggesting that the fitted model is robust in spite of being simple. For some countries,
such as Denmark, Malaysia, and the Philippines, the actual and predicted values are reasonably close. On the other hand,
for many countries the predicted values overestimate the actual number of new cases (Estonia, France, Germany, Italy,
etc.). However, in a few instances - e.g. Qatar and United Arab Emirates, the actual number of new daily cases starts to
outgrow the predicted values in the latter half of the 10 days (same was observed for 7 days and 15 days). Note that these
countries do not appear to share a common connection. Although the regression model accounts for the historical number
of daily cases (and the average rate of new daily cases), a possible explanation why it may under or overestimates the
true number of new daily cases is due to the fact that it does not take into account many other factors that can influence
the spread of infectious diseases, such as the behaviour of individuals (e.g. social, travel, etc.), government action, and
economic policies.
5
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Fig. 2. The number of new cases versus the next 10 days ahead. The solid line is the predicted number of new cases. The lines of dashes are the
95 percent confidence intervals. The line of dots is the predicted median of the number of new cases. The red line gives the actual number of new
cases. The y axes are in log scale.

Whilst this method has its advantages of being simple, straightforward and yet robust, the results should be interpreted
with caution. They allow us to capture the general trend of the new daily cases in each country and generate some basic
predictions in the short term. However, arguably, this approach misses key factors that are accounted for in other types
of available models. Therefore, it would not be wise to purely use the results presented here to make policy decisions,
but rather these results should be used in conjunction with those from other analyses, which can help to support or
contradict.

Furthermore, we do not consider here the historical daily mortality due to COVID-19 as there exist many dependent
factors that should be considered when modelling these numbers. Examples include available treatments, susceptible
population, hospital capacity, transmission rate, location and elevation risk, socio-economic factors and many more. This
data can often be limited or hard to obtain due to restrictions such as data privacy or unreliable reporting. For further
information we refer the readers to Booth and Tickle [32].
6
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Fig. 3. The number of new cases versus the next 10 days ahead. The solid line is the predicted number of new cases. The lines of dashes are the
95 percent confidence intervals. The line of dots is the predicted median of the number of new cases. The red line gives the actual number of new
cases. The y axes are in log scale.

Finally, we check robustness of the (log, negative binomial) model. We fitted all four models ((identity, Poisson), (log,
Poisson), (identity, negative binomial) and (log, negative binomial)) to the two halves of the data set. The first half was
taken as the data from 31 December 2019 to 11 February 2020. The second half was taken as the data from 12 February
2020 to 25 March 2020. The values of AIC and BIC for the four models for each half are given in Tables 3 and 4. We see
that the (log, negative binomial) model gives the smallest values for each country and for each half.

5. Conclusions

We have provided a statistical study on the modelling and analysis of the daily incidence of COVID-19 in eighteen
countries around the world. In particular, we have investigated whether it is possible to fit count regression models to
the number of daily new cases of COVID-19 in various countries and make short term predictions of these numbers. The
results suggest that the biggest advantage of these methods is that they are simplistic and straightforward allowing us
7
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Fig. 4. The number of new cases versus the next 7 days ahead. The solid line is the predicted number of new cases. The lines of dashes are the
95 percent confidence intervals. The line of dots is the predicted median of the number of new cases. The red line gives the actual number of new
cases. The y axes are in log scale.

able 4
alues of AIC (and values of BIC in brackets) for the four models fitted to the data from 12 February 2020 to 25 March 2020.
Country Models

(Identity, Poisson) (Log, Poisson) (Identity, negative binomial) (Log, negative binomial)

China −46.8 (−43.3) −50.9 (−47.3) −55.3 (−50.0) −56.2 (−50.9)
Denmark −47.4 (−43.9) −50.1 (−46.5) −49.0 (−43.7) −59.7 (−54.4)
Estonia −50.5 (−47.1) −58.6 (−55.2) −59.1 (−53.9) −63.0 (−57.9)
France −51.7 (−48.2) −54.7 (−51.1) −59.4 (−54.0) −60.7 (−55.4)
Germany −50.3 (−46.7) −58.5 (−55.0) −58.6 (−53.3) −60.6 (−55.3)
Italy −47.6 (−44.1) −47.8 (−44.2) −58.8 (−53.5) −60.7 (−55.3)
Malaysia −52.8 (−49.3) −53.3 (−49.8) −55.8 (−50.6) −58.1 (−52.8)
Philippines −46.4 (−42.9) −48.2 (−44.7) −49.9 (−44.7) −50.6 (−45.4)
Qatar −53.9 (−50.5) −59.5 (−56.0) −59.4 (−54.3) −62.8 (−57.6)
South Korea −46.5 (−42.9) −55.6 (−52.1) −62.1 (−56.8) −62.5 (−57.2)
Sri Lanka −47.2 (−43.9) −49.9 (−46.5) −50.9 (−46.0) −60.1 (−55.1)
Sweden −49.0 (−45.5) −49.7 (−46.2) −54.0 (−48.6) −57.5 (−52.2)
Taiwan −47.3 (−43.8) −47.9 (−44.4) −52.8 (−47.5) −55.9 (−50.7)
Thailand −49.2 (−45.8) −59.7 (−56.3) −61.9 (−56.8) −62.2 (−57.2)
United Arab Emirates −47.5 (−44.1) −51.2 (−47.8) −56.9 (−51.8) −63.9 (−58.8)
United Kingdom −51.5 (−48.0) −54.6 (−51.1) −54.6 (−49.3) −59.1 (−53.8)
United States of America −50.6 (−47.0) −51.4 (−47.9) −54.8 (−49.5) −55.2 (−49.9)
Vietnam −49.4 (−45.9) −49.9 (−46.5) −54.8 (−49.6) −60.1 (−54.9)

to obtain preliminary results and an overall picture of the trends in the daily confirmed cases of COVID-19 in different
countries.

The best fitting count regression model for modelling the number of new daily COVID-19 cases of all countries was
hown to be a negative binomial distribution with log link function. The best fitted model was robust in that the 95 percent
onfidence intervals for prediction contained the actual number of new cases for each country. However, the model was
8
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Fig. 5. The number of new cases versus the next 15 days ahead. The solid line is the predicted number of new cases. The lines of dashes are the
95 percent confidence intervals. The line of dots is the predicted median of the number of new cases. The red line gives the actual number of new
cases. The y axes are in log scale.

not able to predict the trends of new daily cases well for China. We believe that this could be related to fact that China
was the first country to be significantly affected, and by the time other countries started to be affected by COVID-19, China
had already reached its peak in confirmed cases and their confirmed cases dramatically declined. Given these results, this
suggests that this model may be more useful for modelling the early stages of an outbreak, when the number of new cases
is increasing, and, more specifically, this suggests that a count regression model is better suited for modelling new daily
cases when the trend is increasing linearly, semi-exponentially, or exponentially. Among the countries that fit well with
this model, the slope estimate was positive in all cases, indicating that the expected number of new cases being confirmed
each day is expected to increase with respect to time. The UK and Vietnam have the largest and smallest slope estimates,
respectively, hence the rate of the daily increase in COVID-19 cases is highest for the UK and lowest for Vietnam. The
model is beneficial for short term predictions in order to see the short term trend and the rate of growth of new cases,
when no intervention measures are taken. In addition, the results could be useful in contributing to making health policy
decisions or government intervention, but more importantly, these results should be used in conjunction with the results
from other mathematical models that are more specific to epidemiology.

Nevertheless, direct extensions to the current work could include modelling the daily mortality due to COVID-19.
Such models could incorporate dependent factors that influence mortality rate such as available treatments, susceptible
population, hospital capacity, transmission rate, location and elevation risk, socio-economic factors and many more. A
further extension is to seek models that are theoretically motivated for COVID data.
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